![]() ![]()
|
Boosters, Gain and DistortionWhy booster pedals do not all sound alikeIt is a well known fact that booster pedals produce a range of tones other than simple gain. While equalization and tone shaping can be built into a pedal to alter the frequency response, there is a less understood circuit principal at work which causes some pedals to sound clean and others to have a fat or even distorted tone. This article will delve into a few of the causes of the tonal differences in boosters.
The basic booster pedal, as shown below, is a voltage amplifier that makes the signal larger to drive the amp or other effects harder. The gain stage is followed by an output volume control that allows the amount of drive to varied to suit the gear and playing style. A practical example of a simple jfet booster is also included for reference.
The booster circuit in our example is capable of a voltage gain of about 15. This means that the 1v input signal theoretically will become 15v on the output. However, in the real world where the booster pedal is powered by a 9v battery, it is not possible for the output to reach 15v since it is limited by the power supply to 0v to 9v maximum swing, and in our jfet example it is more like 0 to 8v.
Note that the initial pick attack is lost (clipped) but the remainder of the signal will be reproduced accurately once the input falls to a level that the booster is able to output. What is heard is distortion and compression during the first few milliseconds while the gain stage is banging against the limits of its power supply rails. The manner in which the circuit begins to go into this non-linear response region (the clipping area) is what determines the character of the distorted sound. It is commonly thought that bipolar transistors begin to clip suddenly and harshly while jfets will enter into this region more gracefully. Further characterization of those ideas is beyond the scope of this article. The gain circuit discussed above is the most common booster pedal topology in use today. The LPB (bipolar) booster and its clones typify this design style. The mini-booster is also a gain-then-attenuator setup as are many other booster pedals. The clipping on the pick attack contributes to the characteristic sound of each of those pedal designs.
If we want to eliminate the non-linear clipping and distortion from our booster, there are several methods available. One method is to move the attenuator (volume control) to the front of the circuit before the gain stage, as shown here.
Since the gain circuit only has to swing from 0v to 5v, there is no clipping distortion and compression. A clean signal is the result. While this may seem like the ideal solution, it has a couple of significant problems. First, the input impedance is no longer the amp-like 1M as in the first jfet booster example, but it is now the parallel value of the volume control and the gate resistor on the jfet, or, about 91k ohms. Yikes! This relatively low impedance will cause loss of signal strength and a dulling of high frequencies. However, it may be acceptable depending on the other parts of the booster design. More importantly, the signal-to-noise ratio of the circuit has suffered greatly. The input signal is smaller but the noise contributed by the 15x gain stage is exactly the same as before. Smaller signal, same noise = worse signal-to-noise and a booster that is not optimized for guitar use. Some vintage pedals use this method of trimming the input signal to control the output level of the boost pedal.
The input signal coming from the guitar is still 1 volt but the circuit now has variable gain, essentially 1x to 15x. The gain control can be trimmed back to the 5x position and the output is at the level desired. The input impedance is still 1M and the noise is actually less since any fizz-hiss-pop on the input signal is amplified less than when the booster is running full gain as in the first two examples. The jfet example of variable gain shown above is not practical since the bias of the jfet (drain voltage) is changing as the gain control is adjusted. A more practical example of a variable gain booster pedal is the AMZ Mosfet Booster. An alternative method of getting a cleaner sound from a booster pedal is to power the circuit with a higher voltage supply. If the supply voltage is increased to 18v, then the booster in the first example can swing 0v to 17v (approximately) and the situation is much improved. The 1v input is multiplied by the gain-of-15 circuit and the output swings from 0v to 15v, which is within the capabilities of the pedal to reproduce without clipping. This is a common technique employed to give a cleaner sound to boosters and it may be achieved by using two batteries, an external power adapter or an internal voltage multiplier such as the MAX1044 to increase the supply voltage. Each of these alternate methods have problems of their own: two batteries are costlier, heavier and require more space in the pedal, an external adapter can add hum and requires access to wall power, and the voltage multiplier has a high frequency oscillator that can induce noise into the circuitry. Also, if the output of the guitar's pickups are hotter than average, let's say 1.2v pk-pk, then the output would be required to swing to 18v and it cannot even with the 18v power supply -- we start to encounter the same problems again. On the other hand, the variable gain circuit is able to handle the stronger pickup signal with no problem.
The same circuit configurations apply to opamp circuits as well:
|
AMZ-FX Home Page
Lab Notebook Main Page
Guitar Effects Blog
©2005 Jack Orman
All Rights Reserved